Abstract

I will give an overview of a first draft of a compilation thesis, which is divided into two sections, one for each of two separate methodological initiatives. The first section deals with the development of a family of survival functions, intended to provide reliable age-specific estimates of death probabilities and life expectancies for all ages in the entire human life span (see attachment for a brief description of the functions). The second section deals with summary measures of risk inequalities among three or more groups, and offers a Monte-Carlo simulation procedure, which can be used to estimate excess fractions (of a Poisson distributed adverse event) in the absence of a natural reference group. The excess fraction gives an estimate of the proportion of the observed events that would not have occurred if the risk in each of the examined groups had been equal to that in the group with the lowest risk.